Add like
Add dislike
Add to saved papers

Copper-induced metabolic variation of oysters overwhelmed by salinity effects.

Chemosphere 2017 May
In estuarine environments, Cu (copper) contamination is simultaneously coupled with salinity variation. In this study, (1)H NMR was applied to investigate the metabolic disturbance of estuarine oysters Crassostrea hongkongensis under both Cu and salinity stresses. Oysters were exposed to dissolved Cu (50 μg L(-1)) at different salinities (10, 15 and 25 psu) for six weeks, and the Cu accumulation in the oyster tissues was higher at lowered salinity. Based on the NMR-metabolomics results, disturbances induced by Cu and salinity was mainly related to osmotic regulation, energy metabolism and glycerophospholipid metabolism, as indicated by the alteration of important metabolic biomarkers such as alanine, citrate, glucose, glycogen, betaine, taurine, hypotaurine and homarine in the gills. At lower salinity, oysters accumulated higher energy related compounds (e.g., glucose and glycogen) and amino acids (e.g., aspartate, dimethylglycine and lysine), with the enhancement of ATP/ADP production and accumulation of oxidizable amino acids catabolized from protein breakdown. With Cu exposure, the synthesis from glycine to dimethylglycine was observed to cope with severe osmotic stress, together with the elevation of lysine and homarine. The effects induced by Cu were much similar for each salinity treatment, but the combination of Cu and salinity turned out to be consistent with the singular salinity effects. Therefore, salinity played a dominant role in affecting the metabolites of oysters when combined with Cu exposure. This study indicated that salinity should be taken into consideration in order to predict the Cu toxicity in estuarine organisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app