Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation.

Water Research 2017 April 16
Of all of the strategies for controlling reverse osmosis (RO) membrane fouling, chemical cleaning is indispensable. To study the effects of chemical cleaning on membrane foulant removal, a comparative analysis of RO membranes before and after common alkaline and acid cleaning was conducted by dissecting lead and terminal RO membranes in a full-scale municipal wastewater reclamation plant. Most foulants on the membranes were removed by chemical cleaning processes. Calcium was the major inorganic component of the foulants because of its highest concentration in the feed water. Aluminum and iron were also abundant elements on the membranes due to their high deposition ratios and low removal efficiencies. Hydrophilic neutrals (HIN) and hydrophobic neutrals (HON) were the two largest dissolved organic matter (DOM) fractions on the membranes before cleaning. HIN and hydrophilic acids (HIA) were not effectively removed. Chemical cleaning removed 94% and 90% of the total bacteria on the lead and tail membranes and considerably changed the structure of the microbial communities. Bacteria excessively producing extracellular polymeric substance (EPS), such as Pseudomonas and Zoogloea, were much more resistant to the chemical cleaning process. After cleaning, the membrane microbial community structures were more similar to those in the feed water than the structures on the membranes before cleaning. These results shed light on the effects of cleaning in a full-scale RO plant, improves our understanding of the removal of foulants and provides potential research directions for cleaning methods and RO pretreatment processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app