Add like
Add dislike
Add to saved papers

The expanded CAG repeat in the huntingtin gene as target for therapeutic RNA modulation throughout the HD mouse brain.

The aim of these studies was to demonstrate the therapeutic capacity of an antisense oligonucleotide with the sequence (CUG)7 targeting the expanded CAG repeat in huntingtin (HTT) mRNA in vivo in the R6/2 N-terminal fragment and Q175 knock-in Huntington's disease (HD) mouse models. In a first study, R6/2 mice received six weekly intracerebroventricular infusions with a low and high dose of (CUG)7 and were sacrificed 2 weeks later. A 15-60% reduction of both soluble and aggregated mutant HTT protein was observed in striatum, hippocampus and cortex of (CUG)7-treated mice. This correction at the molecular level resulted in an improvement of performance in multiple motor tasks, increased whole brain and cortical volume, reduced levels of the gliosis marker myo-inositol, increased levels of the neuronal integrity marker N-aceyl aspartate and increased mRNA levels of the striatal marker Darpp-32. These neuroanatomical and neurochemical changes, together with the improved motor performance, suggest that treatment with (CUG)7 ameliorates basal ganglia dysfunction. The HTT-lowering was confirmed by an independent study in Q175 mice using a similar (CUG)7 AON dosing regimen, further demonstrating a lasting reduction of mutant HTT protein in striatum, hippocampus and cortex for up to 18 weeks post last infusion along with an increase in motor activity. Based on these encouraging results, (CUG)7 may thus offer an interesting alternative HTT-lowering strategy for HD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app