Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Electrochemical Reduction of CO 2 at Functionalized Au Electrodes.

Electrochemical reduction of CO2 provides an opportunity to store renewable energy as fuels with much greater energy densities than batteries. Product selectivity of the reduction reaction is known to be a function of the electrolyte and electrode; however, electrodes modified with functional ligands may offer new methods to control selectivity. Here, we report the electrochemical reduction of CO2 at functionalized Au surfaces with three thiol-tethered ligands: 2-mercaptopropionic acid, 4-pyridinylethanemercaptan, and cysteamine. Remarkably, Au electrodes modified with 4-pyridinylethanemercaptan show a 2-fold increase in Faradaic efficiency and 3-fold increase in formate production relative to Au foil. Conversely, electrodes with 2-mercaptopropionic acid ligands show nearly 100% Faradaic efficiency toward the hydrogen evolution reaction, while cystemine-modified electrodes show 2-fold increases in both CO and H2 production. We propose a proton-induced desorption mechanism associated with pKa of the functionalized ligand as responsible for the dramatic selectivity changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app