Add like
Add dislike
Add to saved papers

3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers.

Nanoscale 2017 April 21
The use of 3-dimensional (3D) printable conductive materials has gained significant attention for various applications because of their ability to form unconventional geometrical architectures that cannot be realized with traditional 2-dimensional printing techniques. To resolve the major requisites in printed electrodes for practical applications (including high conductivity, 3D printability, excellent adhesion, and low-temperature processability), we have designed a chemically-reinforced multi-dimensional filler system comprising amine-functionalized carbon nanotubes, carboxyl-terminated silver nanoparticles, and Ag flakes, with the incorporation of a thermoplastic polystyrene-polyisoprene-polystyrene (SIS) triblock copolymer. It is demonstrated that both high conductivity, 22 939 S cm-1 , and low-temperature processability, below 80 °C, are achievable with the introduction of chemically anchored carbon-to-metal hybrids and suggested that the highly viscous composite fluids employing the characteristic thermoplastic polymer are readily available for the fabrication of various unconventional electrode structures by a simple dispensing technique. The practical applicability of the 3D-printable highly conductive composite paste is confirmed with the successful fabrication of wireless power transmission modules on substrates with extremely uneven surface morphologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app