Add like
Add dislike
Add to saved papers

In situ mechanical investigation of carbon nanotube-graphene junction in three-dimensional carbon nanostructures.

Nanoscale 2017 Februrary 24
Hierarchically organized three-dimensional (3D) carbon nanotubes/graphene (CNTs/graphene) hybrid nanostructures hold great promises in composite and battery applications. Understanding the junction strength between CNTs and graphene is crucial for utilizing such special nanostructures. Here, in situ pulling an individual CNT bundle out of graphene is carried out for the first time using a nanomechanical tester developed in-house, and the measured junction strength of CNTs/graphene is 2.23 ± 0.56 GPa. The post transmission electron microscopy (TEM) analysis of remained graphene after peeling off CNT forest confirms that the failure during pull-out test occurs at the CNT-graphene junction. Such a carefully designed study makes it possible to better understand the interfacial interactions between CNTs and graphene in the 3D CNTs/graphene nanostructures. The coupled experimental and computational effort suggests that the junction between the CNTs and the graphene layer is likely to be chemically bonded, or at least consisting of a mixture of chemical bonding and van der Waals interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app