Add like
Add dislike
Add to saved papers

Core-shell formation in self-induced InAlN nanorods.

Nanotechnology 2017 March 18
We have examined the early stages of self-induced InAlN core-shell nanorod (NR) formation processes on amorphous carbon substrates in plan-view geometry by means of transmission electron microscopy methods. The results show that the grown structure phase separates during the initial moments of deposition into a majority of Al-rich InAlN and a minority of In-enriched InAlN islands. The islands possess polygonal shapes and are mainly oriented along a crystallographic c-axis. The growth proceeds with densification and coalescence of the In-enriched islands, resulting in a base for the In-enriched NR cores with shape transformation to hexagonal. The Al-rich shell formation around such early cores is observed at this stage. The matured core-shell structure grows axially and radially, eventually reaching a steady growth state which is dominated by the axial NR growth. We discuss the NR formation mechanism by considering the adatom surface kinetics, island surface energy, phase separation of InAlN alloys, and incoming flux directions during dual magnetron sputter epitaxy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app