JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biomechanical Forces Promote Immune Regulatory Function of Bone Marrow Mesenchymal Stromal Cells.

Stem Cells 2017 May
Mesenchymal stromal cells (MSCs) are believed to mobilize from the bone marrow in response to inflammation and injury, yet the effects of egress into the vasculature on MSC function are largely unknown. Here we show that wall shear stress (WSS) typical of fluid frictional forces present on the vascular lumen stimulates antioxidant and anti-inflammatory mediators, as well as chemokines capable of immune cell recruitment. WSS specifically promotes signaling through NFκB-COX2-prostaglandin E2 (PGE2 ) to suppress tumor necrosis factor-α (TNF-α) production by activated immune cells. Ex vivo conditioning of MSCs by WSS improved therapeutic efficacy in a rat model of traumatic brain injury, as evidenced by decreased apoptotic and M1-type activated microglia in the hippocampus. These results demonstrate that force provides critical cues to MSCs residing at the vascular interface which influence immunomodulatory and paracrine activity, and suggest the potential therapeutic use of force for MSC functional enhancement. Stem Cells 2017;35:1259-1272.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app