Add like
Add dislike
Add to saved papers

Engineering potent long-acting variants of the Wnt inhibitor DKK2.

Wnt signaling pathways are required for a wide variety of biological processes ranging from embryonic development to tissue repair and regeneration. Dickkopf-2 (DKK2) is classically defined as a canonical Wnt inhibitor, though it may play a role in activating non-canonical Wnt pathways in the context of endothelial network formation after acute injury. Here we report the discovery of a fusion partner for a DKK2 polypeptide that significantly improves the expression, biochemical properties and pharmacokinetics (PK) of the DKK2 polypeptide. Specifically, human serum albumin (HSA) was identified as a highly effective fusion partner. Substitution of selected amino acid residues in DKK2 designed to decrease heparan sulfate binding by HSA-DKK2 variants, further improved the PK properties of the molecule in rodents. The HSA-DKK2 variants were monomeric, as thermally stable as wild type, and active as measured by their ability to bind to and prevent phosphorylation of the Wnt coreceptor LRP6. Our engineering efforts resulted in potent long-lived variants of the canonical Wnt inhibitor DKK2, applicable for Wnt pathway manipulation either by systematic delivery or focused administration at sites of tissue injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app