Add like
Add dislike
Add to saved papers

Impaired auditory-to-motor entrainment in Parkinson's disease.

Several electrophysiological studies suggest that Parkinson's disease (PD) patients have a reduced tendency to entrain to regular environmental patterns. Here we investigate whether this reduced entrainment concerns a generalized deficit or is confined to movement-related activity, leaving sensory entrainment intact. Magnetoencephalography was recorded during a rhythmic auditory target detection task in 14 PD patients and 14 control subjects. Participants were instructed to press a button when hearing a target tone amid an isochronous sequence of standard tones. The variable pitch of standard tones indicated the probability of the next tone to be a target. In addition, targets were occasionally omitted to evaluate entrainment uncontaminated by stimulus effects. Response times were not significantly different between groups and both groups benefited equally from the predictive value of standard tones. Analyses of oscillatory beta power over auditory cortices showed equal entrainment to the tones in both groups. By contrast, oscillatory beta power and event-related fields demonstrated a reduced engagement of motor cortical areas in PD patients, expressed in the modulation depth of beta power, in the response to omitted stimuli, and in an absent motor area P300 effect. Together, these results show equally strong entrainment of neural activity over sensory areas in controls and patients, but, in patients, a deficient translation of the adjustment to the task rhythm to motor circuits. We suggest that the reduced activation reflects not merely altered resonance to rhythmic external events, but a compromised recruitment of an endogenous response reflecting internal rhythm generation. NEW & NOTEWORTHY Previous studies suggest that motor cortical activity in PD patients has a reduced tendency to entrain to regular environmental patterns. This study demonstrates that the deficient entrainment in PD concerns the motor system only, by showing equally strong entrainment of neural activity over sensory areas in controls and patients but, in patients, a deficient translation of this adjustment to the task rhythm to motor circuits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app