Add like
Add dislike
Add to saved papers

Photosensitizer-mediated mitochondria-targeting nanosized drug carriers: Subcellular targeting, therapeutic, and imaging potentials.

Mitochondria-targeting drug carriers have considerable potential because of the presence of many molecular drug targets in the mitochondria and their pivotal roles in cellular viability, metabolism, maintenance, and death. To compare the mitochondria-targeting abilities of triphenylphosphonium (TPP) and pheophorbide a (PhA) in nanoparticles (NPs), this study prepared mitochondria-targeting NPs using mixtures of methoxy poly(ethylene glycol)-(SS-PhA)2 [mPEG-(SS-PhA)2 or PPA] and TPP-b-poly(ε-caprolactone)-b-TPP [TPP-b-PCL-b-TPP or TPCL], which were designated PPAn-TPCL4-n (0≤n≤4) NPs. With increasing TPCL content, the formed PPAn-TPCL4-n NPs decreased in size from 33nm to 18nm and increased in terms of positive zeta-potentials from -12mV to 33mV. Although the increased TPCL content caused some dark toxicity of the PPAn-TPCL4-n NPs due to the intrinsic positive character of TPCL, the NPs showed strong light-induced killing effects in tumor cells. In addition, the mitochondrial distribution of the PPAn-TPCL4-n NPs was analyzed and imaged by flow cytometry and confocal microscopy, respectively. Thus, the PhA-containing NPs specifically targeted the mitochondria, and light stimulation caused PhA-mediated therapeutic effects and imaging functions. Expanding the capabilities of these nanocarriers by incorporating other drugs should enable multiple potential applications (e.g., targeting, therapy, and imaging) for combination and synergistic treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app