JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

MRI and MRS of the human brain at magnetic fields of 14T to 20T: Technical feasibility, safety, and neuroscience horizons.

NeuroImage 2018 March
The three goals of this paper are: 1) to evaluate the improvements in technology for increasing magnetic flux density (magnetic field) to 14T in the next few years and eventually to 20T; 2) to highlight neuroscience opportunities enabled by these advances; and, 3) to evaluate the physiological and biophysical effects associated with MRI at very high performance levels. Substantial recent advances in magnet technology including superconductor developments enable neuroscience goals that are not obtainable at contemporary magnetic fields. Ten areas of brain neuroscience include potential improvements in resolution for functional MRI(BOLD), diffusion weighted MRI, tractography, susceptibility weighted MR, neuronal architecture patterns related to human behavior, proton spectroscopy of small brain biochemicals, chemical exchange saturation transfer (CEST), dynamic contrast enhanced MRI, brain energy metabolism using 13 C, 17 O, and 31 P; and brain electrolyte physiology using 23 Na, 35 Cl, and 39 K. Physiological phenomena and safety aspects include: absorbed RF power, acoustic sound pressure levels, induced electric fields, Lorentz forces, magnetohydrodynamic forces, and biophysical phenomena in cells and tissues. Where feasible, effects are quantified for magnetic fields beyond 7T with the conclusion that there are no foreseen barriers either in the technical or human safety aspects of brain MRI and MRS at fields up to 20T. This conclusion is conditioned on results of recommended experiments to verify the predicted level of physiological effects beyond 9.4T. This technology is predicted to enable quantification of biochemical components of the functioning brain not detectable heretofore.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app