Add like
Add dislike
Add to saved papers

Histone deacetylase 7 silencing induces apoptosis and autophagy in salivary mucoepidermoid carcinoma cells.

BACKGROUND: The overexpression of histone deacetylases (HDACs) has been observed in many cancers, and inhibition of specific HDACs has emerged as a new target for cancer therapy. We found that HDAC7 expression was selectively reduced by HDAC inhibitor apicidin in salivary mucoepidermoid carcinoma (MEC) cells. Here, we show that HDAC7 suppression has a potent antitumor effect in MEC cells.

METHODS: Histone deacetylases7 was knocked down using HDAC7 siRNAs, and cell proliferation was quantified. Cell cycle progression, apoptosis, and autophagy were measured by flow cytometry and immunoblotting.

RESULTS: Histone deacetylases 7 siRNAs inhibited cell proliferation and c-Myc expression, increased p27 expression, and caused G2/M phase cell cycle arrest in both YD-15 and Mc3 cells. HDAC7 silencing increased the sub-G1 population, Annexin V positive apoptotic cells and cleaved caspase3 levels. HDAC7 silencing induced an increase in autophagic markers, number of acidic vesicular organelles, and LC3B II levels, and decrease in p62 levels. HDAC7 siRNAs reduced the activation of ERK. HDAC7 knockdown resulted in growth inhibition through G2/M phase cell cycle arrest and induced both apoptosis and autophagy in MEC cells.

CONCLUSIONS: This study indicates that inhibition of HDAC7 might become a novel and effective therapeutic approach for treating to MEC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app