JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase - Investigation on dissolved organic matter transformation and microbial community shift.

Water Research 2017 April 2
In this study, a mixture of primary and wasted activated sludge was fermented in a semi-continuous reactor aiming for enhanced volatile fatty acids (VFAs) production. The reactor was subjected to a stepwise pH increase from 7 to 10 during approximately 130 days of operation. The result revealed that the maximum acidification was obtained at pH 8.9 (21%) resulting in the maximum production of VFAs (423.22 ± 25.49 mg COD/g VSS), while the maximum hydrolysis efficiency was observed at pH 9.9 (42%). The high pH was effective in releasing dissolved organic matter (DOM) including protein, carbohydrate, building blocks and low molecular weight (LMW) neutrals. More LMW DOMs were released than high molecular weight (HMW) DOMs fractions at higher pH. pH 9.9 favored hydrolysis of HMW DOMs while it did not enhance the acidogenesis of LMW DOMs. The microbial community analysis showed that the relative abundance of phyla Actinobacteria and Proteobacteria increased with the increased pH, which may lead to the maximum hydrolysis at pH 9.9. At pH 8.9, class Clostridia (59.16%) was the most dominant population where the maximum acidification (21%) was obtained. This suggested that the dominance of Clostridia was highly related to acidification extent. The relative abundance of Euryarchaeota decreased significantly from 58% to 2% with increased pH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app