Add like
Add dislike
Add to saved papers

Physiological and molecular characterization of compost bacteria antagonistic to soil-borne plant pathogens.

Disease suppressive composts have the potential to mitigate the risks associated with chemical pesticides. One of the main characteristics responsible for the suppressive nature of composts is their microbiological populations. To gain insight into the determinants responsible for their suppressive effects, we assayed composts to (i) isolate and identify beneficial antagonistic bacteria, (ii) quantify their antifungal and anti-oomycetal activities, (iii) extract inhibitory compounds produced by the bacteria, and (iv) identify antimicrobial lipopeptides produced by these bacteria. The antagonistic bacteria belonged to the genera Arthrobacter, Pseudomonas, Bacillus, Brevibacillus, Paenibacillus, and Rummeliibacillus and had the ability to antagonise the growth of Fusarium sambucinum, Verticillium dahliae, and (or) Pythium sulcatum. These bacteria produced antimicrobial compounds that affected the mycelial growth and (or) conidial germination of the pathogens. Mass spectrometry analyses showed the presence of various antimicrobial lipopeptides in Bacillus and Bacillus-related spp. extracts, demonstrating that they are responsible, at least in part, for the antagonistic activity of the bacteria. Results from this work provide greater insight into some of the biological, biochemical, and physiological determinants of suppressiveness in composts involved in the control of plant pathogens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app