Add like
Add dislike
Add to saved papers

HSO 2 + Formation from Ion-Molecule Reactions of SO 2 ⋅+ with Water and Methane: Two Fast Reactions with Reverse Temperature-Dependent Kinetic Trend.

In this work an experimental and theoretical study on the formation of HSO2 + ion from the SO2 ⋅+ +CH4 and SO2 ⋅+ +H2 O ion-molecule reactions at different temperatures is reported. Tunable synchrotron radiation was used to produce the SO2 ⋅+ ion in excited ro-vibrational levels of the ionic ground state X2 A1 and mass spectrometry was employed to identify the product ions. Calculations in the frame of the density functional theory and variational transition state theory were combined to explore the dynamics of the reactions. The experimental results show that HSO2 + is the only product in both reactions. Its yield decreases monotonically with photon energy in the SO2 ⋅+ +H2 O reaction, while it decreases at first and then increases in the SO2 ⋅+ +CH4 reaction. Theory confirms this trend by calculating the rate constants at different temperatures and explains the results by means of the polar, spin and charge effects as well as structural reorganization occurring in the reaction coordinate. The dynamic behavior observed in these two reactions is of general and fundamental interest. It can also provide some insights on the role of these reactions in astrochemistry as well as in their use as models for bond-activation reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app