Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions.

Despite advances in cancer treatment, metastasis remains today the main cause of cancer death. Local control through complete surgical resection of the primary tumor continues to be a key principle in cancer treatment. However, surgical interventions themselves lead to adverse oncologic outcomes and are associated with significantly increased rates of metastasis. Neutrophils through release of neutrophil extracellular traps (NETs) in response to infections were shown to be able to capture circulating cancer cells, and in doing so, support the development of metastatic disease. To be able to intervene on this process, understanding the exact molecular nature of these mechanisms is crucial. We therefore hypothesize and demonstrate that β1-integrin is an important factor mediating the interactions between circulating tumor cells and NETs. We show that β1-integrin expression on both cancer cells and NETs is important for the adhesion of circulating tumor cells to NETs both in vitro and in vivo. Using a murine model of intra-abdominal sepsis to mimic the postoperative inflammatory environment, we show that β1-integrin expression is upregulated in the context of inflammation in vivo. Ultimately, we show that this increased early cancer cell adhesion to NETs in vivo and this effect is abrogated when mice are administered DNAse 1. Our data therefore sheds light on the first molecular mechanism by which NETs can trap circulating tumor cells (CTCs), broadening our understanding of this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app