Add like
Add dislike
Add to saved papers

Methionine 35 sulphoxide reduces toxicity of Aβ in red blood cell.

BACKGROUND: The oxidation of methionine residue in position 35 of Ab to sulphoxide (Ab-sulphoxide) has the ability to deeply modify wild-type Ab 1-42 (Ab) neurotoxic action. Our previous studies suggest that in nucleated cells, lower toxicity of Ab-sulphoxide might result not from structural alteration, but from elevation of methionine sulphoxide reductase A (MsrA) activity and mRNA levels.

DESIGN: On this basis, we hypothesised that red blood cell (RBC), a cell devoid almost completely of MsrA activity, shares with nucleated cells an antioxidant system induced by methionine 35 sulphoxide, responsible for the lower toxicity of Ab-sulphoxide in RBC. (Results) Supporting this hypothesis, we found that the low toxicity of Ab-sulphoxide in RBC correlated with pentose phosphate pathway (PPP) flux increase, and this event was associated with a low level of methionine oxidation in total proteins. None of these effects were observed when cells were exposed to Ab native.

DISCUSSION: These results outline the importance of the redox state of methionine 35 in the modulation of Ab-mediated events and suggest an important protective role for PPP in RBC of patients affected by Alzheimer's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app