JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regioselective Molecularly Imprinted Reaction Field for [4 + 4] Photocyclodimerization of 2-Anthracenecarboxylic Acid.

Molecularly imprinted cavities have functioned as a regioselective reaction field for the [4 + 4] photocyclodimerization of 2-anthracenecarboxylic acid (2-AC). Molecularly imprinted polymers were prepared by precipitation polymerization of N-methacryloyl-4-aminobenzamidine as a functional monomer to form a complex with template 2-AC and ethylene glycol dimethacrylate as a crosslinking monomer. The 2-AC-imprinted cavities thus constructed preferentially bound 2-AC with an affinity greater than that toward structurally related 9-anthracenecarboxylic acid, 2-aminoanthracene, and unsubstituted anthracene. Moreover, from the four possible regioisomeric cyclodimers, they mediated the [4 + 4] photocyclodimerization of 2-AC specifically to the anti-head-to-tail (anti-HT) isomer. This indicates that the imprinted cavities accommodate two 2-AC molecules in an anti-HT manner, thereby facilitating the subsequent regioselective photocyclodimerization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app