Add like
Add dislike
Add to saved papers

Selective solute adsorption and partitioning around single PNIPAM chains.

Thermoresponsive polymer architectures have become integral building blocks of 'smart' functional materials in modern applications. For a large range of developments, e.g. for drug delivery or nanocatalytic carrier systems, the selective adsorption and partitioning of molecules (ligands or reactants) inside the polymeric matrix are key processes that have to be controlled and tuned for the desired material function. In order to gain insights into the nanoscale structure and binding details in such systems, we here employ molecular dynamics simulations of the popular poly(N-isopropylacrylamide) (PNIPAM) polymer in explicit water in the presence of various representative solute types with a focus on aromatic model reactants. We study a single polymer chain and explore the influence of its elongation, stereochemistry, and temperature on the solute binding affinities. While we find that the excess adsorption generally increases with the size of the solute, the temperature-dependent affinity to the chain is highly solute specific and has a considerable dependence on the polymer elongation (i.e. polymer swelling state). We elucidate the molecular mechanisms of the selective binding in detail and eventually present how the results can be extrapolated to macroscopic partitioning of the solutes in swollen polymer architectures, such as hydrogels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app