Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Millitesla magnetic field effects on the photocycle of an animal cryptochrome.

Scientific Reports 2017 Februrary 9
Drosophila have been used as model organisms to explore both the biophysical mechanisms of animal magnetoreception and the possibility that weak, low-frequency anthropogenic electromagnetic fields may have biological consequences. In both cases, the presumed receptor is cryptochrome, a protein thought to be responsible for magnetic compass sensing in migratory birds and a variety of magnetic behavioural responses in insects. Here, we demonstrate that photo-induced electron transfer reactions in Drosophila melanogaster cryptochrome are indeed influenced by magnetic fields of a few millitesla. The form of the protein containing flavin and tryptophan radicals shows kinetics that differ markedly from those of closely related members of the cryptochrome-photolyase family. These differences and the magnetic sensitivity of Drosophila cryptochrome are interpreted in terms of the radical pair mechanism and a photocycle involving the recently discovered fourth tryptophan electron donor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app