Add like
Add dislike
Add to saved papers

Sampling for silver nanoparticles in aqueous media using a rotating disk electrode: evidence for selective sampling of silver nanoparticles in the presence of ionic silver.

Amendment of a carbon paste electrode consisting of graphite and Nujol®, with a variety of organic and inorganic materials, allows direct adsorption of silver nanoparticles (AgNPs) from aqueous solution in either open or close circuit modes. The adsorbed AgNPs are detected by stripping voltammetry. Detection limits of less than 1 ppb Ag are achievable with a rotating disk system. More than one silver peak was apparent in many of the stripping voltammograms. The appearance of multiple peaks could be due to different species of silver formed upon stripping or variation in the state of aggregation or size of nanoparticles. With most of these packing materials, dissolved Ag(+) was also extracted from aqueous solution, but, with a packing material made with Fe(II,III) oxide nanoparticles, only AgNPs were extracted. Therefore, it is the best candidate for determination of metallic AgNPs in aqueous environmental samples without interference from Ag(+).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app