Add like
Add dislike
Add to saved papers

Association of soil selenium, strontium, and magnesium concentrations with Parkinson's disease mortality rates in the USA.

Among the 41 soil elements analyzed from 4856 sites across the contiguous 48 states, average Parkinson's disease (PD) mortality rates between 1999 and 2014 have the most significant positive correlation with the average soil strontium (Sr) concentrations (correlation r = 0.47, significance level p = 0.00), and average PD mortality rates have the most significant inverse correlation with the average soil selenium (Se) concentrations (r = -0.44, p = 0.00). Multivariate regression models indicate that soil Sr and Se concentrations can explain 35.4% of spatial disparities of the state average PD mortality rates between 1999 and 2014 (R 2  = 0.354). When the five outlier states were removed from the model, concentrations of soil Sr and Se can explain 62.4% (R 2  = 0.624) of the spatial disparities of PD mortality rates of the 43 remaining states. The results also indicate that high soil magnesium (Mg) concentrations suppressed the growth rate of the PD mortality rates between 1999 and 2014 in the 48 states (r = -0.42, p = 0.000). While both Se and Sr have been reported to affect the nervous system, this study is the first study that reported the statistically significant association between the PD mortality rates and soil concentrations of Se, Sr, and Mg in the 48 states. Given that soil elemental concentration in a region is broad indicator of the trace element intake from food, water, and air by people, implications of the results are that high soil Se and Mg concentrations helped reduce the PD mortality rates and benefited the PD patients in the 48 states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app