Add like
Add dislike
Add to saved papers

The effect of wastewater effluent derived ligands on copper and zinc complexation.

The shift toward bioavailability-based standards for metals such as copper and zinc not only improves the ecological relevance of the standard but also introduces significant complexity into assessing compliance. This study examined differences in the copper and zinc complexation characteristics of effluents from a range of different sewage treatment works and in relation to so-called 'natural' samples. This information is essential to determine whether the inclusion of effluent-specific complexation characteristics within the regulatory framework could enhance the environmental relevance of compliance criteria. The data show that for copper, binding affinity was not greater than that measured for materials derived from the receiving water environment, with a mean log K of between 4.4 and 5.15 and mean complexation capacity ranging from 38 to 120 μg/mg dissolved organic carbon (DOC) for effluents compared with a log K of 5.6 and complexation capacity of 37 μg/mg DOC for the Suwannee River fulvic acid. For zinc, however, effluents exhibited a much higher complexation capacity, with effluent means ranging from 3 to 23 μg/mg DOC compared with the Suwannee River fulvic acid, for which the complexation capacity could not be determined. Synthetic ligands in sewage effluent, such as ethylenediaminetetraacetic acid (EDTA), are implicated as contributing to these observed differences. This suggests that the current biotic ligand models for zinc might overstate the risk of harm in effluent-impacted waters. The data also show that the copper and zinc complexation characteristics of effluent samples obtained from the same sewage treatment works were less different from one another than those of effluents from other treatment works and therefore that sewage source has an important influence on complexation characteristics. The findings from this study support the case that the contribution to complexation from effluent-derived ligands could enhance the environmental relevance of bioavailability-based compliance criteria, in particular for zinc, owing to the additional complexation capacity afforded by effluent-derived ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app