JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A rapid NMR-based method for discrimination of strain-specific cell wall teichoic acid structures reveals a third backbone type in Lactobacillus plantarum.

The lactic acid bacterium Lactobacillus plantarum is capable of producing strain-specific structures of cell wall teichoic acid (WTA), an anionic polysaccharide found in the Gram-positive bacterial cell wall. In this study, we established a rapid, NMR-based procedure to discriminate WTA structures in this species, and applied it to 94 strains of L. plantarum. Six previously reported glycerol- and ribitol-containing WTA subtypes were successfully identified from 78 strains, suggesting that these were the dominant structures. However, the level of structural variety differed markedly among bacterial sources, possibly reflecting differences in strain-level microbial diversity. WTAs from eight strains were not identified based on NMR spectra and were classified into three groups. Structural analysis of a partial degradation product of an unidentified WTA produced by strain TUA 1496L revealed that the WTA was 1-O-β-d-glucosylglycerol. Two-dimensional NMR analysis of the polymer structure showed phosphodiester bonds between C-3 and C-6 of the glycerol and glucose residues, suggesting a polymer structure of 3,6΄-linked poly(1-O-β-d-glucosyl-sn-glycerol phosphate). This is the third WTA backbone structure in L. plantarum, following 3,6΄-linked poly(1-O-α-d-glucosyl-sn-glycerol phosphate) and 1,5-linked poly(ribitol phosphate).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app