Add like
Add dislike
Add to saved papers

[Surgical Regeneration Therapy Using Myoblast Sheets for Severe Heart Failure].

Heart failure is a life-threatening disorder worldwide, and the current end-stage therapies for severe heart failure are replacement therapies such as ventricular-assist devices and heart transplantation. Although these therapies have been reported to be useful, there are many issues in terms of the durability, complications, limited donors, adverse effect of continuous administration of immunosuppressive agents, and high costs involved. Recently, regenerative therapy based on genetic, cellular, or tissue engineering techniques has gained attention as a new therapy to overcome the challenges encountered in transplantation medicine. We focused on skeletal myoblasts as the source of progenitor cells for autologous cell transplantation and the cell-sheet technique for site-specific implantation. In vitro studies have reported that myoblast sheets secrete cytoprotective and angiogenic cytokines such as hepatocyte growth factor (HGF). Additionally, in vivo studies using large and small animal models of heart failure, we have shown that myoblast sheets could improve diastolic and systolic performance and enhance angiogenesis and antifibrosis as well as the expression of several cytokines including HGF and vascular endothelial growth factor(VEGF) in the tissues at the transplanted site. Based on the results of these studies, we performed clinical trials using autologous myoblast sheets in ischemic cardiomyopathy (ICM) and dilated cardiomyopathy patients. Some patients showed left ventricular reverse remodeling and improved symptoms and exercise tolerance. Recently, multiple medical institutions including our institution successfully conducted an exploratory, uncontrolled, open-label phase II study in subjects with ICM to validate the efficacy and safety of autologous myoblast sheets. Moreover, as a novel cell source for regenerative medicine, our recent studies demonstrated that induced pluripotent stem cell-derived cardiomyocyte sheets showed electrical and microstructural homogeneity with heart tissue in vitro and in vivo, thus establishing proof of concept in small and large animal models of heart failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app