Add like
Add dislike
Add to saved papers

Humidity and Inspired Oxygen Concentration During High-Flow Nasal Cannula Therapy in Neonatal and Infant Lung Models.

BACKGROUND: High-flow nasal cannula therapy (HFNC) for neonate/infants can deliver up to 10 L/min of heated and humidified gas, and FIO2 can be adjusted to between 0.21 and 1.0. With adults, humidification and actual FIO2 are known to vary according to inspiratory and HFNC gas flow, tidal volume (VT ), and ambient temperature. There have been few studies focused on humidification and FIO2 in HFNC settings for neonates/infants, so we performed a bench study to investigate the influence of gas flow, ambient temperature, and respiratory parameters on humidification and actual FIO2 in a neonate/infant simulation.

METHODS: HFNC gas flow was set at 3, 5, and 7 L/min, and FIO2 was set at 0.3, 0.5, and 0.7. Spontaneous breathing was simulated using a 2-bellows-in-a-box model of a neonate lung. Tests were conducted with VT settings of 20, 30, and 40 mL and breathing frequencies of 20 and 30 breaths/min. Inspiratory time was 0.8 s with decelerating flow waveform. The HFNC tube was placed in an incubator, which was either set at 37°C or turned off. Absolute humidity (AH) and actual FIO2 were measured for 1 min using a hygrometer and an oxygen analyzer, and data for the final 3 breaths were extracted.

RESULTS: At all settings, when the incubator was turned on, AH was greater than when it was turned off ( P < .001). When the incubator was turned off, as gas flow increased, AH increased ( P < .001); however, VT did not affect AH ( P = .16). As gas flow increased, actual FIO2 more closely corresponded to set FIO2 . When gas flow was 3 L/min, measured FIO2 decreased proportionally more at each FIO2 setting increment ( P < .001).

CONCLUSIONS: AH was affected by ambient temperature and HFNC gas flow. Actual FIO2 depended on VT when gas flow was 3 L/min.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app