Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis.

Human Molecular Genetics 2016 October 16
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of hereditary skin disorder characterized by an aberrant cornification of the epidermis. ARCI is classified into a total of 11 subtypes (ARCI1-ARCI11) based on their causative genes or loci. Of these, the causative gene for only ARCI7 has not been identified, while it was previously mapped on chromosome 12p11.2-q13.1. In this study, we performed genetic analyses for three Lebanese families with ARCI, and successfully determined the linkage interval to 9.47 Mb region on chromosome 12q13.13-q14.1, which was unexpectedly outside of the ARCI7 locus. Whole-exome sequencing and the subsequent Sanger sequencing led to the identification of missense mutations in short chain dehydrogenase/reductase family 9C, member 7 (SDR9C7) gene on chromosome 12q13.3, i.e. two families shared an identical homozygous mutation c.599T > C (p.Ile200Thr) and one family had another homozygous mutation c.214C > T (p.Arg72Trp). In cultured cells, expression of both the mutant SDR9C7 proteins was markedly reduced as compared to wild-type protein, suggesting that the mutations severely affected a stability of the protein. In normal human skin, the SDR9C7 was abundantly expressed in granular and cornified layers of the epidermis. By contrast, in a patient’s skin, its expression in the cornified layer was significantly decreased. It has previously been reported that SDR9C7 is an enzyme to convert retinal into retinol. Therefore, our study not only adds a new gene responsible for ARCI, but also further suggests a potential role of vitamin A metabolism in terminal differentiation of the epidermis in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app