Add like
Add dislike
Add to saved papers

Contaminant Removal from Source Waters Using Cathodic Electrochemical Membrane Filtration: Mechanisms and Implications.

Removal of recalcitrant anthropogenic contaminants from water calls for the development of cost-effective treatment technologies. In this work, a novel electrochemical membrane filtration (EMF) process using a conducting microfiltration membrane as the cathode has been developed and the degradation of sulphanilic acid (SA) examined. The electrochemical degradation of SA in flow-by mode followed pseudo-first-order kinetics with the degradation rate enhanced with increase in charging voltage. Hydrogen peroxide as well as oxidants such as HO• and Fe(IV)O2+ were generated electrochemically with HO• found to be the dominant oxidant responsible for SA degradation. In addition to the anodic splitting of water, HO• was formed via a heterogeneous Fenton process with surface-bound Fe(II) resulting from aerobic corrosion of the steel mesh. In flow-through mode, the removal rate of SA was 13.0% greater than obtained in flow-by mode, presumably due to the better contact of the contaminant with the oxidants generated in the vicinity of the membrane surface. A variety of oxidized products including hydroquinone, p-benzoquinone, oxamic acid, maleic acid, fumaric acid, acetic acid, formic acid, and oxalic acid were identified and an electrochemical degradation pathway proposed. These findings highlight the potential of the cathodic EMF process as an effective technology for water purification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app