Add like
Add dislike
Add to saved papers

Stereodynamic control of star-epoxy/anhydride crosslinking actuated by liquid-crystalline phase transitions.

Soft Matter 2017 March 9
The epoxy/anhydride copolymerization kinetics of an original star-epoxy monomer (TriaEP) was explored in dynamic heating mode using a series of isoconversional methods. Negative values of the apparent activation energy (Eα ) related to an anti-Arrhenius behavior were observed. The transition from Arrhenius to anti-Arrhenius behavior and vice versa depending on the Eα of polymerization was correlated with the dynamics of mesophasic fall-in/fall-out events, physically induced transition (PIT) and chemically induced transition (CIT). This self-assembly phenomenon induces the generation of an anisotropic crosslinked architecture exhibiting both nematic discotic (ND ) and nematic columnar (NC ) organization. Particular emphasis was placed on evaluating the juxtaposition/contribution of the liquid-crystalline transitions to crosslinking, considering both the reaction dynamics and the macromolecular vision.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app