Add like
Add dislike
Add to saved papers

Fully alloyed metal nanorods with highly tunable properties.

Nanoscale 2017 Februrary 24
Alloyed metal nanorods offer a unique combination of enhanced plasmonic and photothermal properties with a wide variety in optical and catalytic properties as a function of the alloy composition. Here, we show that fully alloyed anisotropic nanoparticles can be obtained with complete retention of the particle shape via thermal treatment at surprisingly low temperatures. By coating Au-Ag, Au-Pd and Au-Pt core-shell nanorods with a protective mesoporous silica shell the transformation of the rods to a more stable spherical shape was successfully prevented during alloying. For the Au-Ag core-shell NRs the chemical stability was drastically increased after alloying, and from Mie-Gans and finite-difference time-domain (FDTD) calculations it followed that alloyed AuAg rods also exhibit much better plasmonic properties than their spherical counterparts. Finally, the generality of our method is demonstrated by alloying Au-Pd and Au-Pt core-shell NRs, whereby the AuPd and AuPt alloyed NRs showed a surprisingly high increase in thermal stability of several hundred degrees compared with monometallic silica coated Au NRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app