JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structural and Dynamic Insights into a Glycine-Mediated Short Analogue of a Designed Peptide in Lipopolysaccharide Micelles: Correlation Between Compact Structure and Anti-Endotoxin Activity.

Biochemistry 2017 March 8
In this study, we report an interaction study of a 13-residue analogue peptide VG13P (VARGWGRKCPLFG), derived from a designed VG16KRKP peptide (VARGWKRKCPLFGKGG), with a Lys6Gly mutation and removal of the last three residues Lys14 -Gly15 -Gly16 , in lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria and responsible for sepsis or septic shock. VG13P displays an enhanced anti-endotoxin property as evident from significant reduction in LPS-induced TNF-α gene expression levels in a monocytic cell line, while it retains almost unchanged antimicrobial activity as its parent VG16KRKP against Gram-negative bacterial as well as fungal pathogens. In addition, in vitro LPS binding properties of VG13P in comparison to its parent VG16KRKP also remained unhindered, suggesting that the flexible C-terminal end of VG16KRKP may not play a major role in its observed antibacterial and LPS binding properties. An NMR-resolved solution structure of VG13P in LPS reveals two consecutive β-turns: one at the N-terminus, followed by another at the central region, closely resembling a rocking chair. The crucial Lys6Gly mutation along with C-terminal truncation from VG16KRKP reorients the hydrophobic hub in VG13P in a unique way so as to fold the N-terminal end back on itself, forming a turn and allowing Val1 and Ala2 to interact with Leu11 and Phe12 to bring the hydrophobic residues closer together to form a more compact hub compared to its parent. The hub is further strengthened via CH-π interaction between Gly4 and Phe12. This accounts for its improved anti-endotoxin activity as well as to its uninterrupted antimicrobial activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app