COMPARATIVE STUDY
JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Circumferential strain by velocity vector imaging and speckle-tracking echocardiography: validation against sonomicrometry in an aortic phantom.

BACKGROUND: Evaluation of arterial deformation and mechanics using strain analysis on ultrasound greyscale images has gained increasing scientific interest. The aim of this study was to validate in vitro measurements of circumferential strain by velocity vector imaging (VVI) and speckle-tracking echocardiography (STE) against sonomicrometry as a reference method.

METHOD: Two polyvinyl alcohol phantoms sized to mimic the descending aorta were constructed and connected to a pulsatile flow pump to obtain high-resistance flow profiles. The ultrasound images of the phantom used for strain analyses were acquired with a transesophageal probe. Global and regional circumferential strains were estimated using VVI and STE and were compared with the strain acquired by sonomicrometry.

RESULTS: Global circumferential peak strain estimated by VVI and STE correlated well to sonomicrometry (r = 0·90, P≤0·001; and r = 0·97, P≤0·01) with a systematic bias of -0·78% and +0·63%, respectively. The reference strain levels were 1·07-2·54%. Circumferential strain values obtained by VVI were significantly lower than those obtained by STE (bias -1·41%, P≤0·001).

CONCLUSION: Global circumferential strain measured by VVI and STE correlates well with sonomicrometry. However, strain values obtained by VVI and STE differ significantly, which should be taken into consideration when comparing results from studies using different software for aortic strain measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app