JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Endophytic Fungus Phomopsis liquidambari Increases Nodulation and N 2 Fixation in Arachis hypogaea by Enhancing Hydrogen Peroxide and Nitric Oxide Signalling.

Microbial Ecology 2017 August
The continuous cropping obstacles in monoculture fields are a major production constraint for peanuts. Application of the endophytic fungus Phomopsis liquidambari has increased peanut yields, and nodulation and N2 fixation increases have been considered as important factors for P. liquidambari infection-improved peanut yield. However, the mechanisms involved in this process remain unknown. This work showed that compared with only Bradyrhizobium inoculation, co-inoculation with P. liquidambari significantly elevated endogenous H2 O2 and NO levels in peanut roots. Pre-treatment of seedlings with specific scavengers of H2 O2 (CAT) and NO (cPTIO) blocked P. liquidambari-induced nodulation and N2 fixation. CAT not only suppressed the P. liquidambari-induced nodulation and N2 fixation, but also suppressed the enhanced H2 O2 and NO generation. Nevertheless, the cPTIO did not significantly inhibit the induced H2 O2 biosynthesis, implying that H2 O2 acted upstream of NO production. These results were confirmed by observations that exogenous H2 O2 and sodium nitroprusside (SNP) reversed the inhibition of P. liquidambari-increased nodulation and N2 fixation by the specific scavengers. The transcriptional activities of the symbiosis-related genes SymRK and CCaMK of peanut-Bradyrhizobium interactions also increased significantly in response to P. liquidambari, H2 O2 and SNP treatments. The pot experiment further confirmed that the P. liquidambari infection-enhanced H2 O2 and NO signalling pathways were significantly related to the increase in peanut nodulation and N2 fixation. This is the first report that endophytic fungus P. liquidambari can increase peanut-Bradyrhizobium interactions via enhanced H2 O2 /NO-dependent signalling crosstalk, which is conducive to the alleviation of continuous cropping obstacles via an increase in nodulation and N2 fixation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app