Add like
Add dislike
Add to saved papers

Electrochemical Investigation of Adsorption of Single-Wall Carbon Nanotubes at a Liquid/Liquid Interface.

ChemistryOpen 2017 Februrary
There is much interest in understanding the interfacial properties of carbon nanotubes, particularly at water/oil interfaces. Here, the adsorption of single-wall carbon nanotubes (SWCNTs) at the water/1,2-dichloroethane (DCE) interface, and the subsequent investigation of the influence of the adsorbed nanotube layer on interfacial ion transfer, is studied by using the voltammetric transfer of tetramethylammonium (TMA(+)) and hexafluorophosphate (PF6(-)) as probe ions. The presence of the interfacial SWCNT layer significantly suppresses the transfer of both ions across the interface, with a greater degree of selectivity towards the PF6(-) ion. This effect was attributed both to the partial blocking of the interface by the SWCNTs and to the potential dependant adsorption of background electrolyte ions on the surface of the SWCNTs, as confirmed by X-ray photoelectron spectroscopy, which is caused by an electrostatic interaction between the interfacial SWCNTs and the transferring ion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app