Add like
Add dislike
Add to saved papers

Diagnostic Ability of Retinal Nerve Fiber Layer Thickness Deviation Map for Localized and Diffuse Retinal Nerve Fiber Layer Defects.

Purpose. To evaluate the diagnostic ability of the retinal nerve fiber layer (RNFL) deviation map for glaucoma with localized or diffuse RNFL defects. Methods. Eyes of 139 glaucoma patients and 165 healthy subjects were enrolled. All participants were imaged with Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA). A RNFL defect was defined as at least 10 contiguous red (<1% level) superpixels in RNFL deviation map. The area, location, and angular width of RNFL defects were automatically measured. We compared sensitivities, specificities, and area under the receiver operating characteristic curves (AUCs) of RNFL deviation map and circumpapillary RNFL thickness for localized and diffuse RNFL defects. Subgroup analysis was performed according to the severity of glaucoma. Results. For localized defects, the area of RNFL defects (AUC, 0.991; sensitivity, 97%; specificity, 90%) in deviation map showed a higher diagnostic performance (p = 0.002) than the best circumpapillary RNFL parameter (inferior RNFL thickness; AUC, 0.914; sensitivity, 79%; specificity, 92%). For diffuse defects, there was no significant difference between the RNFL deviation map and circumpapillary RNFL parameters. In mild glaucoma with localized defect, RNFL deviation map showed a better diagnostic performance than circumpapillary RNFL measurement. Conclusions. RNFL deviation map is a useful tool for evaluating glaucoma regardless of localized or diffuse defect type and has advantages over circumpapillary RNFL measurement for detecting localized RNFL defects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app