Add like
Add dislike
Add to saved papers

Structure identification in pipe flow using proper orthogonal decomposition.

The energetic motions in direct numerical simulations of turbulent pipe flow at Reτ =685 are investigated using proper orthogonal decomposition. The procedure is extended such that a pressure component is identified in addition to the three-component velocity field for each mode. The pressure component of the modes is shown to align with the streamwise velocity component associated with the large-scale motions, where positive pressure coincides with positive streamwise velocity, and vice versa. The streamwise evolution of structures is then visualized using a conditional mode, which exhibit a strong similarity to the large-scale, low-momentum motions. A low-pressure region is present in the downstream section of the structure, and a high-pressure region is present in the upstream section.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app