Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Uniform tissue lesion formation induced by high-intensity focused ultrasound along a spiral pathway.

Ultrasonics 2017 May
Both theoretical and experimental studies were performed here to investigate the lesion formation induced by high-intensity focused ultrasound (HIFU) operating in continuous scanning mode along a spiral pathway. The Khokhlov-Zabolotskaya-Kuznetsov equation and bio-heat equation were combined in the current model to predict HIFU-induced temperature distribution and lesion formation. The shape of lesion and treatment efficiency were assessed for a given scanning speed at two different grid spacing (3mm and 4mm) in the gel phantom studies and further researched in ex vivo studies. The results show that uniform lesions can be generated with continuous HIFU scanning along a spiral pathway. The complete coverage of the entire treated volume can be achieved as long as the spacing grid of the spiral pathway is small enough for heat to diffuse and deposit, and the treatment efficiency can be optimized by selecting an appropriate scanning speed. This study can provide guidance for further optimization of the treatment efficiency and safety of HIFU therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app