Add like
Add dislike
Add to saved papers

Combining molecular and bioprocess techniques to produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with controlled monomer composition by Burkholderia sacchari.

Biopolymers as polyhydroxyalkanoates (PHA) composed by different co-monomers 3-hydroxybutyrate and 3-hydroxyhexanoate [P(3HB-co-3HHx)] has attracted interest since its properties are similar to low density polyethylene. Burkholderia sacchari produces this copolymer with a very low 3HHx molar fraction, about 2 mol%. B. sacchari mutant (unable to produce polymer) was engineered to host PHA biosynthesis genes (phaPCJ) from Aeromonas sp. In addition, a two-step bioprocess to increase biopolymer production was developed. The combination of these techniques resulted in the production of P(3HB-co-3HHx) with 3HHx content up to 20 mol%. The PHA content was about 78% of dry biomass, resulting in PHA volumetric productivities around 0.45gl-1 h-1 . The P(3HB-co-3HHx) containing 20 mol% of 3HHx presented an elongation at brake of 945%, higher than reported before for this PHA composition. Here we have described an approach to increase 3HHx content into the copolymer, allowing the precise control of the 3HHx molar fractions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app