Add like
Add dislike
Add to saved papers

Designing of a single gene encoding four functional proteins.

In the genomes of some organisms such as bacteriophages and bacteria, a DNA sequence is able to encode two different proteins, indicating that genetic information is compacted in DNA twice denser than in usual DNA. In theory, a DNA sequence has a maximal capacity to produce six different mRNAs, however, it is an intriguing question how many of these mRNAs are able to synthesize functional proteins. Here, we design a DNA sequence encoding four collagen-like proteins, two, (Gly-Arg-Pro)n and (Gly-Ala-Pro)n, from a sense mRNA and the other two, also (Gly-Arg-Pro)n and (Gly-Ala-Pro)n from its antisense mRNA, all of which are expected to form triple-helical structures unique to collagens. Other designs such as the combination of (Gly-Arg-Pro)n, (Gly-Val-Pro)n, (Gly-Thr-Pro)n and (Gly-Arg-Pro)n are also possible. The proposed DNA sequence is considered to contain the most compact genetic information ever created.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app