JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Primordial helium entrained by the hottest mantle plumes.

Nature 2017 Februrary 17
Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet's interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high (3)He/(4)He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower (3)He/(4)He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-(3)He/(4)He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-(3)He/(4)He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have (3)He/(4)He values ranging from low to high, other hotspots exhibit only low (3)He/(4)He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum (3)He/(4)He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum (3)He/(4)He ratios. We interpret the relationships between (3)He/(4)He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes-which exhibit seismic low-velocity anomalies at depths of 200 kilometres-are more buoyant and entrain both high-(3)He/(4)He and low-(3)He/(4)He material. In contrast, cooler, less buoyant plumes do not entrain this high-(3)He/(4)He material. This can be explained if the high-(3)He/(4)He domain is denser than low-(3)He/(4)He mantle components hosted in plumes, and if high-(3)He/(4)He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-(3)He/(4)He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app