JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Synthetic Protein Mimics for Functional Protein Delivery.

Biomacromolecules 2017 March 14
The use of proteins as biological tools and therapeutic agents is limited due to the fact that proteins do not effectively cross the plasma membrane of cells. Here, we report a novel class of protein transporter molecules based on protein transduction domain mimics (PTDMs) synthesized via ring opening metathesis polymerization (ROMP). The PTDMs reported here were specifically inspired by amphiphilic peptides known to deliver functional proteins into cells via noncovalent interactions between the peptide and the cargo. This contrasts with peptides like TAT, penetratin, and R9, which often require covalent fusion to their cargoes. Using the easily tunable synthetic ROMP platform, the importance of a longer hydrophobic segment with cationic guanidinium groups was established through the delivery of EGFP into Jurkat T cells. The most efficient of these protein transporters was used to deliver functional Cre Recombinase with ∼80% knockdown efficiency into hard to transfect human T cells. Additionally, a C-terminally deleted form of the transcription factor Runx1 (Runx1.d190) was delivered into primary murine splenocytes, producing a 2-fold increase in c-Myc mRNA production, showcasing the versatility of this platform to deliver biologically active proteins into hard to transfect cell types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app