Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Post-polyploidisation morphotype diversification associates with gene copy number variation.

Scientific Reports 2017 Februrary 7
Genetic models for polyploid crop adaptation provide important information relevant for future breeding prospects. A well-suited model is Brassica napus, a recent allopolyploid closely related to Arabidopsis thaliana. Flowering time is a major adaptation trait determining life cycle synchronization with the environment. Here we unravel natural genetic variation in B. napus flowering time regulators and investigate associations with evolutionary diversification into different life cycle morphotypes. Deep sequencing of 35 flowering regulators was performed in 280 diverse B. napus genotypes. High sequencing depth enabled high-quality calling of single-nucleotide polymorphisms (SNPs), insertion-deletions (InDels) and copy number variants (CNVs). By combining these data with genotyping data from the Brassica 60 K Illumina® Infinium SNP array, we performed a genome-wide marker distribution analysis across the 4 ecogeographical morphotypes. Twelve haplotypes, including Bna.FLC.A10, Bna.VIN3.A02 and the Bna.FT promoter on C02_random, were diagnostic for the diversification of winter and spring types. The subspecies split between oilseed/kale (B. napus ssp. napus) and swedes/rutabagas (B. napus ssp. napobrassica) was defined by 13 haplotypes, including genomic rearrangements encompassing copies of Bna.FLC, Bna.PHYA and Bna.GA3ox1. De novo variation in copies of important flowering-time genes in B. napus arose during allopolyploidisation, enabling sub-functionalisation that allowed different morphotypes to appropriately fine-tune their lifecycle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app