Add like
Add dislike
Add to saved papers

Identification of an Electrode-Adsorbed Intermediate in the Catalytic Hydrogen Evolution Mechanism of a Cobalt Dithiolene Complex.

Inorganic Chemistry 2017 Februrary 21
Analysis of a cobalt bis(dithiolate) complex reported to mediate hydrogen evolution under electrocatalytic conditions in acetonitrile revealed that the cobalt complex transforms into an electrode-adsorbed film upon addition of acid prior to application of a potential. Subsequent application of a reducing potential to the film results in desorption of the film and regeneration of the molecular cobalt complex in solution, suggesting that the adsorbed species is an intermediate in catalytic H2 evolution. The electroanalytical techniques used to examine the pathway by which H2 is generated, as well as the methods used to probe the electrode-adsorbed species, are discussed. Tentative mechanisms for catalytic H2 evolution via an electrode-adsorbed intermediate are proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app