Add like
Add dislike
Add to saved papers

Characterization and distinction of two flagellar systems in extraintestinal pathogenic Escherichia coli PCN033.

Extraintestinal pathogenic Escherichia coli (ExPEC) can invade and colonize multiple extraintestinal tissues and can cause a wide range of infections; however the mechanisms of its pathogenicity are not well understood. Flagella contribute to the infection of E. coli strains by mediating adhesion and invasion. Our previous bioinformatic analysis revealed two flagella gene clusters in the genome of an ExPEC isolate, PCN033. One encodes the conventional flagellum system (Flag-1) and the other encodes the Flag-2 system, whose function is uncharacterized. Here we aimed to characterize these two flagellum systems and determine their contributions to the flagellum formation and certain pathogenicity-associated phenotypes. Our observations support the involvement of Flag-1 system, but not Flag-2 system, in the synthesis and maturation of the flagellum structure, and in mediating bacterial swimming and swarming. Moreover, flgD, which encodes a flagellar-hook scaffolding protein in the Flag-1 system, is required for flagellum assembly by influencing the production of FliC (flagellin). Deletion of flgD attenuated ExPEC strain PCN033 invasion and colonization in vivo, probably by affecting bacterial adhesion and invasion, and by reducing resistance to phagocytosis by circulating monocytes. In contrast, these phenotypes were not observed in the strain with deletion of lfgD, encoding the FlgD-like protein in the Flag-2 system. Taken together, these findings indicate that Flag-1 flagellum system is the determinative component of bacterial flagella that contributes to the infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app