Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dysregulation of the miR-194-CUL4B negative feedback loop drives tumorigenesis in non-small-cell lung carcinoma.

Cullin 4B (CUL4B), a scaffold protein that assembles CRL4B ubiquitin ligase complexes, is overexpressed in many types of cancers and represses many tumor suppressors through epigenetic mechanisms. However, the mechanisms by which CUL4B is upregulated remain to be elucidated. Here, we show that CUL4B is upregulated in non-small-cell lung carcinoma (NSCLC) tissues and is critically required for cell proliferation and migration in vitro and for xenograft tumor formation in vivo. We found that microRNA-194 (miR-194) and CUL4B protein were inversely correlated in cancer specimens and demonstrated that miR-194 could downregulate CUL4B by directly targeting its 3'-UTR. We also showed that CUL4B could be negatively regulated by p53 in a miR-194-dependent manner. miR-194 was further shown to attenuate the malignant phenotype of lung cancer cells by downregulating CUL4B. Interestingly, CRL4B also epigenetically represses miR-194 by catalyzing monoubiquitination at H2AK119 and by coordinating with PRC2 to promote trimethylation at H3K27 at the gene clusters encoding miR-194. RBX1, another component in CRL4B complex, is also targeted by miR-194 in NSCLC cells. Our results thus establish a double-negative feedback loop between miR-194 and CRL4B, dysregulation of which contributes to tumorigenesis. The function of miR-194 as a negative regulator of CUL4B has therapeutic implications in lung cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app