Add like
Add dislike
Add to saved papers

Assessment of intradialysis calcium mass balance by a single pool variable-volume calcium kinetic model.

INTRODUCTION: A reliable method of intradialysis calcium mass balance quantification is far from been established. We herein investigated the use of a single-pool variable-volume Calcium kinetic model to assess calcium mass balance in chronic and stable dialysis patients.

METHODS: Thirty-four patients on thrice-weekly HD were studied during 240 dialysis sessions. All patients were dialyzed with a nominal total calcium concentration of 1.50 mmol/L. The main assumption of the model is that the calcium distribution volume is equal to the extracellular volume during dialysis. This hypothesis is assumed valid if measured and predicted end dialysis plasma water ionized calcium concentrations are equal. A difference between predicted and measured end-dialysis ionized plasma water calcium concentration is a deviation on our main hypothesis, meaning that a substantial amount of calcium is exchanged between the extracellular volume and a nonmodeled compartment.

FINDINGS: The difference between predicted and measured values was 0.02 mmol/L (range -0.08:0.16 mmol/L). With a mean ionized dialysate calcium concentration of 1.25 mmol/L, calcium mass balance was on average negative (mean ± SD -0.84 ± 1.33 mmol, range -5.42:2.75). Predialysis ionized plasma water concentration and total ultrafiltrate were the most important predictors of calcium mass balance. A significant mobilization of calcium from the extracellular pool to a nonmodeled pool was calculated in a group of patients.

DISCUSSION: The proposed single pool variable-volume Calcium kinetic model is adequate for prediction and quantification of intradialysis calcium mass balance, it can evaluate the eventual calcium transfer outside the extracellular pool in clinical practice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app