Add like
Add dislike
Add to saved papers

Authigenic (10)Be/(9)Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary.

Geomagnetic dipole moment variations associated with polarity reversals and excursions are expressed by large changes of the cosmogenic nuclide beryllium-10 ((10)Be) production rates. Authigenic (10)Be/(9)Be ratios (proxy of atmospheric (10)Be production) from oceanic cores therefore complete the classical information derived from relative paleointensity (RPI) records. This study presents new authigenic (10)Be/(9)Be ratio results obtained from cores MD05-2920 and MD05-2930 collected in the west equatorial Pacific Ocean. Be ratios from cores MD05-2920, MD05-2930 and MD90-0961 have been stacked and averaged. Variations of the authigenic (10)Be/(9)Be ratio are analyzed and compared with the geomagnetic dipole low series reported from global RPI stacks. The largest (10)Be overproduction episodes are related to dipole field collapses (below a threshold of 2 × 10(22) Am(2)) associated with the Brunhes/Matuyama reversal, the Laschamp (41 ka) excursion, and the Iceland Basin event (190 ka). Other significant (10)Be production peaks are correlated to geomagnetic excursions reported in literature. The record was then calibrated by using absolute dipole moment values drawn from the Geomagia and Pint paleointensity value databases. The (10)Be-derived geomagnetic dipole moment record, independent from sedimentary paleomagnetic data, covers the Brunhes-Matuyama transition and the whole Brunhes Chron. It provides new and complementary data on the amplitude and timing of millennial-scale geomagnetic dipole moment variations and particularly on dipole moment collapses triggering polarity instabilities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app