Add like
Add dislike
Add to saved papers

Cytological characterization of an interspecific hybrid in Jatropha and its progeny reveals preferential uniparental chromosome transmission and interspecific translocation.

Breeding Science 2016 December
Genetic variation in Jatropha curcas, a prospective biodiesel plant, is limited, and interspecific hybridization needed for its genetic improvement. Progeny from interspecific crosses between J. curcas and Jatropha integerrima can be used to improve agronomic characters and to increase oil content and yield. However, these hybrids have not been characterized cytologically. The present study was aimed at the analysis of chromosome behavior during meiosis and chromosome composition of S1 plants derived from an interspecific F1 hybrid using genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH). Bivalents that formed as a result of interspecific pairing were frequently observed, suggesting the presence of homoeologous chromosomes from the two species. Almost half of microspores were derived from the reduction division; GISH analysis indicated random transmission of the parent chromosomes to microspores. Male fertility measured as pollen staining with acetocarmine was 48.4%. In contrast, GISH analysis of S1 plants revealed preferential transmission of J. curcas chromosomes. We also found segment exchange between chromosomes of the two species (interspecific translocation) by GISH and FISH analyses. Introgression of J. integerrima chromosome segments into the J. curcas genome would help to improve Jatropha cultivars for mass production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app