Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease.

Heparanase has regulatory roles in various processes, including cell communication, gene transcription and autophagy. In addition, it is the only known mammalian endoglycosidase that is capable of degrading heparan sulfate (HS). HS chains are important constituents and organizers of the extracellular matrix (ECM), and have a key role in maintaining the integrity and function of the glomerular filtration barrier. In addition, HS chains regulate the activity of numerous bioactive molecules, such as cytokines and growth factors, at the cell surface and in the ECM. Given the functional diversity of HS, its degradation by heparanase profoundly affects important pathophysiological processes, including tumour development, neovascularization and inflammation, as well as progression of kidney disease. Heparanase-mediated degradation and subsequent remodelling of HS in the ECM of the glomerulus is a key mechanism in the development of glomerular disease, as exemplified by the complete resistance of heparanase-deficient animals to diabetes and immune-mediated kidney disease. This Review summarizes the role of heparanase in the development of kidney disease, and its potential as a therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app